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The setup

The aim of this talk is to compare two approaches to local Galois module
structure:

Galois scaffolds (Griff Elder + NB: “our method”);

Bondarko’s theory of (semi-)stable extensions, defined via “diagrams”.

Notation:

K : local field of residue characteristic p > 0;

L: totally ramified Galois extension of K of degree pn;

G = Gal(L/K );

OL, OK valuation rings;

PL, PK : maximal ideals of these.
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For each h ∈ Z, the associated order of Ph
L is

Ah = {α ∈ K [G ] : α ·Ph
L ⊆ Ph

L}.

This is a subring (OK -order) in the group algebra K [G ], and is the largest
subring over which Ph

L is a module.

We would like to know when Ph
L is free as an Ah-module.

In both approaches, the aim is to find a “nice” basis of K [G ] whose effect
on L can be described using valuations. If we can do this, we can obtain
an explicit description of Ah and a purely numerical condition for Ph

L to be
free.
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Galois scaffolds (simplified version)
A Galois scaffold on L/K with shift b (with p - b) and tolerance T > 0
consists of

elements λt ∈ L for t ∈ Z with vL(λ) = t;

elements Ψ1, . . . ,Ψn ∈ K [G ] with Ψi · 1 = 0;

satisfying the congruence modulo Pt+pn−ib+T
L :

Ψi · λt ≡

{
λt+pn−ib if a(t)(n−i) ≥ 1

0 if a(t)(n−i) = 0,

where

a(t) = −b−1t mod pn = a(0) + pa(1) + · · ·+ pn−1a(n−1),

with 0 ≤ a(j) ≤ p − 1.

So Ψi “typically” increase valuations by pn−ib.

Our nice basis of K [G ] is Ψ(j) = Ψ
j(0)
n . . .Ψ

j(n−1)

1 .
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Bondarko’s Approach

We first need to define diagrams and the Bondarko isomorphism.

Given ω ∈ L⊗K L, pick an expression for ω:

ω =
∑
i

xi ⊗ yi . (1)

Note x ⊗ y = kx ⊗ k−1y for k ∈ K×.
We assume (1) is irredundant in the sense that there are no i 6= j with

vL(xi )− vL(xj) = vL(yj)− vL(yi ) ≡ 0 (mod pn).

e.g.
ω = 1⊗ µ3 + µ2 ⊗ µ2 + µ2 ⊗ µ3 + µ3 ⊗ 1,

where vL(µ) = 1 (and pn > 3).
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Bondarko’s Approach

Let

R(ω) = {(vL(xi ), vL(yi ))} ⊆ Z× Z
〈(pn,−pn)〉

.

This depends on the choice of expression (1).

e.g. For ω = 1⊗ µ3 + µ2 ⊗ µ2 + µ2 ⊗ µ3 + µ3 ⊗ 1,

R(ω) = {(0, 3), (2, 2), (2, 3), (3, 0)}.

Also define the following, which are independent of the choice (1):

the set of generators of ω,

G (ω) = set of minimal elements of R(ω)

where (u, v) ≤ (u′, v ′)⇔ u ≤ u′ and v ≤ v ′;
e.g. G (ω) = {(0, 3), (2, 2), (3, 0)}.
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Bondarko’s Approach

the level of ω,

d(ω) = min{u + v : (u, v) ∈ R(ω)};

e.g. for
ω = 1⊗ µ3 + µ2 ⊗ µ2 + µ2 ⊗ µ3 + µ3 ⊗ 1,

we have d(ω) = min{3, 4, 5} = 3.

the diagram of ω,

D(ω) = {(u′, v ′) : (u′, v ′) ≥ (u, v) for some (u, v) ∈ R(ω)};

the lower diagonal of ω;

N(ω) = {(u, v) ∈ R(ω) : u + v = d(ω)} ⊆ G (ω),

e.g.
N((ω) = {(0, 3), (3, 0)}.
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Bondarko’s Approach

Now we define the Bondarko isomorphism φ : L⊗ L −→ L[G ] by

φ(x ⊗ y) =
∑
σ∈G

xσ(y)σ.

Inside L[G ] we have the K -subspace K [G ].

Although φ is not an isomorphism of K -algebras, the subspace φ−1(K [G ])
is closed under multiplication in L⊗ L. So we can define the non-standard
multiplication on K [G ] :

ξ ∗ ξ′ = φ
(
φ−1(ξ)φ−1(ξ′)

)
.

Write
ξ∗s = ξ ∗ · · · ∗ ξ︸ ︷︷ ︸

s

.
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Bondarko’s Approach

Bondarko defines L/K to be semistable if there is some ξ ∈ K [G ] so that
ω = φ−1(ξ) ∈ L⊗ L satisfies

(i) p - d(ω);

(ii) |N(ω)| = 2.

L/K is stable if, furthermore,

(iii) |G (ω)| = 2.
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Bondarko’s Approach

Bondarko proves:

If L/K is stable, all ramification numbers are congruent mod pn to
−d(ω), and ξ∗s for 0 ≤ s ≤ pn−1 is a “nice” basis.

Semistable extensions become stable under tamely ramified base
change;

An abelian extension is semistable if and only if it comes from a
finite subgroup of a 1-dimensional formal group.

For stable L/K , he gives a necessary and sufficient numerical condition for
an ideal Ph

L to be free over its associated order. (This works for semistable
extensions under an additional hypothesis.)
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Some initial comparisons

Bondarko’s work came first. The main paper is Bondarko
(Contemp. Math., 2002), building on Bondarko (Doc. Math., 2000).
For our approach, see Elder (PAMS, 2009), Byott & Elder (JNT,
2013), Byott & Elder (to appear in PAMS), and preprints of Byott,
Childs, Elder (2013/2014) on arXiv.

Bondarko comes close to stating that an ideal can only be free in a
semistable extension. We make no such claim.

We give constructions of families of fields with a scaffold. Bondarko
gives no explicit examples.

Bondarko’s basis of K [G ] uses a single generator ξ, but in the
non-standard multiplication. Ours uses n generators Ψ1, . . . ,Ψn

(more complicated!) but in the natural multiplication. This enables
us to treat questions other than the freeness of Ph

L over Ah,
e.g. minimal number of generators, embedding dimension of Ah.
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Some initial comparisons

Our approach extends beyond the Galois setting to A-scaffolds, where
A is a K -algebra with a suitable action on L. For example A could be
a Hopf algebra making the field L into an A-Hopf Galois extension of
K . (Here L/K might or might not be normal or separable.)

Even in the Galois case, our general definition of a scaffold does not
tell us how the Ψi fit with the Hopf algebra structure on K [G ]
(beyond being in the augmentation ideal). Bondarko implicitly uses
the Hopf algebra structure of K [G ] in defining the isomorphism φ.
This would seem to preclude proving in full generality that “any
extension with a scaffold must be semistable”.
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Generalising the Bondarko Isomorphism

Suppose that H is a finite dimensional cocommutative K -Hopf algebra,
and that the field L is an H-Galois extension of K .

We want to define a K -linear isomorphism φ : L⊗ L −→ L⊗ H.

H contains a 1-dimensional subspace of (left and right) integrals,
i.e. elements θ with hθ = ε(h)θ = θh for all h ∈ H, where ε : H −→ K is
the augmentation.

Pick an integral θ 6= 0, and define

φ(x ⊗ y) =
∑
(θ)

x(θ(1) · y)⊗ θ(2)

where
∆(θ) =

∑
(θ)

θ(1) ⊗ θ(2).
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Generalising the Bondarko Isomorphism

Then φ is a K -linear isomorphism (since L is H-Galois) and φ−1(1⊗ H) is
closed under multiplication (since H is cocommutative).

Note that φ depends on the choice of θ, but only up to normalisation by
an element of K×.

In the Galois case H = K [G ], we can take

θ =
∑
σ∈G

σ,

and this gives Bondarko’s φ.
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Example 1: Inseparable Extensions
Let K be a local field of characteristic p, with uniformiser π, and let L be
a totally ramified and purely inseparable extension of degree pn.

Let H be the divided power Hopf algebra of dimension pn. This has
K -basis Di for 0 ≤ i ≤ pn − 1 where

DiDj =

(
i + j

j

)
Di+j ;

this is 0 if i + j ≥ pn. (Think of Di as y i/i !.) Then

H = K [D1,Dp. · · · ,Dpn−1 ], Dp
pj

= 0.

The comultiplication and augmentation are

∆(Dr ) =
r∑

j=0

Dj ⊗ Dr−j and ε(Dr ) = δ0,r .
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Example 1: Inseparable Extensions

Choose b > 0 with p - b. Then we can write L = K (x) with vL(x) = −b
and xp

n ∈ K . Let H act on L by

Dr · x s =

(
s

r

)
x s−r .

This makes L into an H-Galois extension.

Write Ψi = Dpn−i and Xi = xp
n−i

for 1 ≤ i ≤ n. Then L has a K -basis

X
s(0)
n X

s(1)

n−1 . . .X
s(n−1)

1 , 0 ≤ s(j) ≤ p − 1,

and

Ψi · (X
s(0)
n X

s(1)

n−1 . . .X
s(n−1)

1 ) = s(n−i)X
s(0)
n . . .X

s(n−i)−1

i . . .X
s(n−1)

1 .

So Ψi “behaves like differentiation with respect to Xi”.
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Example 1: Inseparable Extensions

For each t ∈ Z, we need λt with vL(λ) = t. Let 0 ≤ a(t) ≤ pn − 1 satisfy
t = −ba(t) + pnft with ft ∈ Z, and set

λt =
πftxa(t)

a(t)(0)! · · · a(t)(n−1)!
= πft

n∏
i=1

X
a(t)(n−i)

i

a(t)(n−i)!
.

Then vL(λt) = t and

Ψi · λt =

{
λt+pn−ib if a(t)(n−i) ≥ 1

0 if a(t)(n−i) = 0.

Thus we have a scaffold of tolerance ∞.
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Example 1: Inseparable Extensions

What does this look like in Bondarko’s set-up?

Claim: ω := x ⊗ 1− 1⊗ x ∈ L⊗ L lies in φ−1(H), so L/K is stable.

Define φ using the integral θ = Dpn−1 with ∆(θ) =
∑pn−1

j=0 Dj ⊗ Dpn−1−j .
Then

φ(ω) =
∑
j

x(Dj · 1)Dpn−1−j −
∑
j

1(Dj · x)Dpn−1−j

= xDpn−1 − (xDpn−1 + Dpn−2)

= Dpn−2.

Moreover, D∗spn−2 = Dpn−1−s , so we get essentially the same “nice” basis
of H as in our scaffold, but in reverse order.

Nigel Byott (University of Exeter, UK ) Scaffolds & Bondarko Diagrams Omaha - 20 May 2014 18 / 24



Example 2: Radical Extensions of Miyata Type
Let K be a local field of characteristic 0 and residue characteristic p ≥ 3,
with absolute ramification index e

Let a ∈ K with vK (a− 1) = s where p - s and 0 < s < ep/(p − 1), and
take L = K (α) with αpn = a. Then L/K is totally ramified of degree pn.
Define

η = α− 1.

Then vL(η) = s.

If K contains a primitive pnth root of unity ζ then L/K is Galois. Its
Galois group is cyclic, generated by σ with σ(α) = ζα. Miyata (1998)
studied the Galois module structure of OL for such L. All the ramification
numbers are congruent to −s mod pn. The group algebra H = K [G ] has a
basis of primitive idempotents

ei =
1

pn

pn−1∑
j=0

ζ−ijσj

and ej · αk = δj ,kα
k for 0 ≤ k ≤ pn − 1.
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Example 2: Radical Extensions of Miyata Type
If ζ 6∈ K , then L/K is not normal, but we can interpret the σj as
embeddings L ↪→ E , where E is the Galois closure of L/K .

Greither-Pareigis theory describes the Hopf-Galois structures on L/K .
Amongst them is an obvious “almost classical” one, in which the Hopf
algebra H acting on L has the ej as a basis. What follows applies in the
non-normal case to this particular Hopf-Galois structure.

In either case, we can use the (rescaled) Bondarko map φ coming from the
integral

θ = p−n
∑
j

σj .

Then
φ(αk ⊗ α−k) = ek .

In the non-standard multiplication ∗ on H,

ej ∗ ek = ej+k .
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Example 2: Radical Extensions of Miyata Type
Let us define

Λk =
k∑

j=0

(−1)k−j
(
k

j

)
ej , so ej =

∑
k

(
j

k

)
Λk .

Then

φ−1(Λ1) = φ−1(e1 − e0)

= α⊗ α−1 − 1⊗ 1

= (1 + η)⊗ (1− η + η2 − · · · )− 1⊗ 1

= η ⊗ 1− 1⊗ η + · · · ,
showing that L/K is stable. Also

ΛjΛk = (−1)j+k
∑
h

(
k

h

)(
j + k − h

k

)
Λh,

and

Λj · ηk = (−1)j+k
∑
h

(
k

h

)(
j + k − h

k

)
ηh.
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Example 2: Radical Extensions of Miyata Type

We now want to construct a scaffold. We guess that, as in Example 1,
that the scaffold basis elements Ψ(j) should match the Bondarko basis
elements Λk but in reverse order. So try setting

Ψr = −Λpn−1−pn−r .

Then

Ψr · ηk = (−1)k
∑
h

(
k

h

)(
pn − 1− pn−r + k − h

k

)
ηh.

The only terms with coefficient not divisible by p are h = k − pn−r and
h = k. Write M for the lattice in OL with OK -basis ηh for
0 ≤ h ≤ pn − 1. Then

Ψr · ηk ≡ k(n−r)η
k−pn−r ≡

(
k

pn−r

)
ηk−p

n−r
(mod pM+ ηkOL).

So Ψr “typically” decreases valuations by pn−r s.
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Example 2: Radical Extensions of Miyata Type

Normalising the ηk appropriately to get elements λt ∈ L with vL(λt) = t,
we then get a scaffold of tolerance s, provided that s ≤ e.

In the Galois case, this means the first ramification number

b1 =
ep

p − 1
− s ≥ e

p − 1

so the ramification of L/K has to be in the “stable” range.

(To apply our general results on scaffolds to read off which ideals are free,
we also need to assume s ≥ 2pn − 1.)
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Remaining Questions

What happens in the other Hopf-Galois structures in the Miyata type
extensions (in the Galois and non-Galois cases)?

We have the class of (near) one-dimensional extensions in
characteristic p which have a Galois scaffold. How do they fit into
Bondarko’s picture?

How do scaffolds behave under tame base change?
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