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The setup

The aim of this talk is to compare two approaches to local Galois module
structure:

o Galois scaffolds (Griff Elder + NB: "our method");

@ Bondarko's theory of (semi-)stable extensions, defined via "diagrams”.

Notation:
@ K: local field of residue characteristic p > 0;
o L: totally ramified Galois extension of K of degree p”;
e G =Gal(L/K);
e Oy, Ok valuation rings;

o By, Px: maximal ideals of these.
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For each h € Z, the associated order of &Bf is
Ap={a € K[G] : a-P] < F]}.
This is a subring (Ok-order) in the group algebra K[G], and is the largest
subring over which &B’L’ is a module.
We would like to know when B7 is free as an Ap-module.

In both approaches, the aim is to find a "nice” basis of K[G] whose effect
on L can be described using valuations. If we can do this, we can obtain
an explicit description of Aj and a purely numerical condition for ‘}3? to be
free.
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Galois scaffolds (simplified version)

A Galois scaffold on L/K with shift b (with p t b) and tolerance ¥ > 0
consists of

o elements A\ € L for t € Z with v (\) = ¢;
e elements Vq,...,V, € K[G] with V;-1=0;

satisfying the congruence modulo ‘Bfrp ans

v . )\t - /\t-f—p"*’-b if a(t)(n_,‘) Z 1
’ 0 if a(t)(n_i) = 0,

where

a(t) = —b 't mod p” = a() + paq) + -+ + P" a(n_1),
with 0 < ac <p-—1.

So W; “typically” increase valuations by p"f"b.
Our nice basis of K[G] is WU) =y ¢l
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Bondarko's Approach

We first need to define diagrams and the Bondarko isomorphism.

Given w € L ®k L, pick an expression for w:
w=Yxoy M)
i

Note x ® y = kx @ k™ 1y for k € K*.
We assume (1) is irredundant in the sense that there are no i # j with

vi(xi) = vi() = vi(y;) — vi(yi) =0 (mod p").
e.g.

w=1p@+ P’ + @+ ®1,
where v (1) =1 (and p" > 3).
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Bondarko's Approach

Let
7 X 7.

R(w) = {(ve(xi), ve(yi))} € o —p")

This depends on the choice of expression (1).
eg Forw=103+ 2o’ +iPeoud+u*el,
R(w) = {(07 3)7 (27 2)7 (27 3)7 (37 O)}

Also define the following, which are independent of the choice (1):
@ the set of generators of w,

G(w) = set of minimal elements of R(w)

where (u,v) < VYe u<d and v <V

(v,
eg G) = {(0.3), (2.2), (3.0)}.
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Bondarko's Approach
o the level of w,
dw)=min{fu+v : (u,v) € R(w)};

e.g. for
w=lo@+ e+ +udel,

we have d(w) = min{3,4,5} = 3.
@ the diagram of w,

D(w) = {(/,V") : (¢, V") > (u,v) for some (u,v) € R(w)};
o the lower diagonal of w;
Nw)={(u,v) € R(w) : u+v=dw)} C Gw),

e.g.
N((w) = {(0,3), (3,0)}.
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Bondarko's Approach

Now we define the Bondarko isomorphism ¢: L ® L — L[G] by

X®y Zxa

oeG

Inside L[G] we have the K-subspace K[G].

Although ¢ is not an isomorphism of K-algebras, the subspace ¢~1(K[G])
is closed under multiplication in L ® L. So we can define the non-standard
multiplication on K[G] :

Ex& =0 (oMo H(E))
Write
£ =g nt.
~———
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Bondarko's Approach

Bondarko defines L/K to be semistable if there is some £ € K[G] so that
w=¢ (¢ € L® L satisfies

(i) ptd(w);

(i) IN(w)| =2
L/K is stable if, furthermore,
(i) |G(w)| = 2.
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Bondarko's Approach

Bondarko proves:
e If L/K is stable, all ramification numbers are congruent mod p” to
—d(w), and £*s for 0 < s < p"~!isa “nice” basis.
@ Semistable extensions become stable under tamely ramified base
change;
@ An abelian extension is semistable if and only if it comes from a
finite subgroup of a 1-dimensional formal group.

For stable L/K, he gives a necessary and sufficient numerical condition for
an ideal &B’L’ to be free over its associated order. (This works for semistable
extensions under an additional hypothesis.)
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Some initial comparisons

@ Bondarko’'s work came first. The main paper is Bondarko
(Contemp. Math., 2002), building on Bondarko (Doc. Math., 2000).
For our approach, see Elder (PAMS, 2009), Byott & Elder (JNT,
2013), Byott & Elder (to appear in PAMS), and preprints of Byott,
Childs, Elder (2013/2014) on arXiv.

@ Bondarko comes close to stating that an ideal can only be free in a
semistable extension. We make no such claim.

@ We give constructions of families of fields with a scaffold. Bondarko
gives no explicit examples.

@ Bondarko's basis of K[G] uses a single generator &, but in the
non-standard multiplication. Ours uses n generators Wq,..., V¥V,
(more complicated!) but in the natural multiplication. This enables
us to treat questions other than the freeness of ‘B’L’ over Ay,

e.g. minimal number of generators, embedding dimension of Aj.
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Some initial comparisons

@ Our approach extends beyond the Galois setting to A-scaffolds, where
Ais a K-algebra with a suitable action on L. For example A could be
a Hopf algebra making the field L into an A-Hopf Galois extension of
K. (Here L/K might or might not be normal or separable.)

@ Even in the Galois case, our general definition of a scaffold does not
tell us how the W; fit with the Hopf algebra structure on K[G]
(beyond being in the augmentation ideal). Bondarko implicitly uses
the Hopf algebra structure of K[G] in defining the isomorphism ¢.
This would seem to preclude proving in full generality that “any
extension with a scaffold must be semistable”.
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Generalising the Bondarko Isomorphism

Suppose that H is a finite dimensional cocommutative K-Hopf algebra,
and that the field L is an H-Galois extension of K.

We want to define a K-linear isomorphism ¢: L@ L — L ® H.

H contains a 1-dimensional subspace of (left and right) integrals,
i.e. elements 6 with hd = e(h)0 = 0h for all h € H, where e: H — K is
the augmentation.

Pick an integral € = 0, and define
d(x@y)=> x(6a)-y) @b
(6)

where

A(9) = Z 9(1) ® 9(2).
(9)
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Generalising the Bondarko Isomorphism

Then ¢ is a K-linear isomorphism (since L is H-Galois) and ¢~ (1 ® H) is
closed under multiplication (since H is cocommutative).

Note that ¢ depends on the choice of 8, but only up to normalisation by
an element of K*.

In the Galois case H = K[G], we can take
0= Z o,

and this gives Bondarko's ¢.

Nigel Byott (University of Exeter, UK ) Scaffolds & Bondarko Diagrams Omaha - 20 May 2014 14 / 24



Example 1: Inseparable Extensions

Let K be a local field of characteristic p, with uniformiser 7, and let L be

a totally ramified and purely inseparable extension of degree p”.

Let H be the divided power Hopf algebra of dimension p"”. This has
K-basis D;j for 0 < i < p" — 1 where

I+J
DiDj = ( i j) Diyj;

this is 0 if i +j > p". (Think of D; as y'/il.) Then
H = K[D1, Dp. - -+, Dpn-1], DS":O‘
The comultiplication and augmentation are

r
A(D;) =Y D;® D,_j and €(D;) = do,.
Jj=0
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Example 1: Inseparable Extensions

Choose b > 0 with p{ b. Then we can write L = K(x) with v/ (x) = —b
and xP" € K. Let H act on L by

D, x° = <5>Xs—r‘
r

This makes L into an H-Galois extension.
Write V; = Dpnf,- and X; = xP" for 1 < i< n. Then L has a K-basis
XOX WX, 0< sy <p-1,
and
n— n—i -1 n—
W (GOX LX) = s Xa@ L X XY,

So V; "behaves like differentiation with respect to X;".
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Example 1: Inseparable Extensions

For each t € Z, we need A with v;(\) = t. Let 0 < a(t) < p" — 1 satisfy
t = —ba(t) + p"f; with f; € Z, and set

ﬂ_ftxa(t) n X""(t)(n—f)

At = S [ (e m—
" a(t) ! a(t) ! ,1;[1 a(t)(n—i!

Then v (A\t) =t and

VA = )\t_’_pnfib if a(t)(,,_,-) >1
’ 0 if a(t)(,,_;) =0.

Thus we have a scaffold of tolerance co.
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Example 1: Inseparable Extensions

What does this look like in Bondarko's set-up?

Claim: w :=x®1—-1®x € L® L liesin ¢~ *(H), so L/K is stable.

Define ¢ using the integral 6 = Dpr_1 with A(0) = p _1 Dj ® Dpn_1_j.
Then

o) = > x(Dj 1)Dpro1j— Y UDj-x)Dpr1-;

J J
= XDpn,1 — (XDpn,1 + Dpn,2)
= Dpr_a.
Moreover, Dg_, = = DP"~1-5 50 we get essentially the same “nice” basis

of H as in our scaffold, but in reverse order.
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Example 2: Radical Extensions of Miyata Type
Let K be a local field of characteristic 0 and residue characteristic p > 3,
with absolute ramification index e
Let a € K with vg(a—1) = s where pfsand 0 <s < ep/(p—1), and
take L = K(a) with aP” = a. Then L/K is totally ramified of degree p".
Define

n=aoa-—1.
Then vi(n) =s.
If K contains a primitive p"th root of unity ¢ then L/K is Galois. Its
Galois group is cyclic, generated by o with o(a) = (. Miyata (1998)
studied the Galois module structure of O; for such L. All the ramification
numbers are congruent to —s mod p". The group algebra H = K[G] has a
basis of primitive idempotents

n—-1

1 pz —ij_j

e = - C (o
" =

oAk 8. k n__
and ¢ - a = ¢ ,a” for 0 < k < p" — 1.
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Example 2: Radical Extensions of Miyata Type

If ¢ ¢ K, then L/K is not normal, but we can interpret the o/ as
embeddings L < E, where E is the Galois closure of L/K.

Greither-Pareigis theory describes the Hopf-Galois structures on L/K.
Amongst them is an obvious “almost classical” one, in which the Hopf
algebra H acting on L has the ¢; as a basis. What follows applies in the
non-normal case to this particular Hopf-Galois structure.

In either case, we can use the (rescaled) Bondarko map ¢ coming from the
integral
0=p" Z o’.
j

Then
p(af @ a™F) = e.

In the non-standard multiplication % on H,
€ * €k = €jtk-
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Example 2: Radical Extensions of Miyata Type

Let us define
: k(K J
A = Z(—l) J<J_>ej, so g = Z <k>/\k.
Jj=0 k
Then
¢ (M) = o (e~ eo)
= a®al-1®1
= (1+n)e@l-n+n*—)-1®1
= n®l-1®n+---,
showing that L/K is stable. Also

AN = ( WHZ()(MLI( h>/\h,
Ak = 1)j+kz<)<.j+k h>nh'
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Example 2: Radical Extensions of Miyata Type

We now want to construct a scaffold. We guess that, as in Example 1,
that the scaffold basis elements W) should match the Bondarko basis
elements Ay but in reverse order. So try setting

\Ur - _/\p"—l—pnf"

ot ()

h

Then

The only terms with coefficient not divisible by p are h =k — p"~" and
h = k. Write M for the lattice in O; with Ok-basis 1" for
0< h<p"—1. Then

_ an—r k __ h—r
v, . k= k(,,_,)nk P = ( )nk P (mod pM 4 nk0y).

r

So W, “typically” decreases valuations by p"~’s.
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Example 2: Radical Extensions of Miyata Type

Normalising the n* appropriately to get elements \; € L with vy (\¢) = t,
we then get a scaffold of tolerance s, provided that s < e.

In the Galois case, this means the first ramification number
e e
P >

by = —
! p—1 S_p—l

so the ramification of L/K has to be in the “stable” range.

(To apply our general results on scaffolds to read off which ideals are free,
we also need to assume s > 2p" —1.)
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Remaining Questions

@ What happens in the other Hopf-Galois structures in the Miyata type
extensions (in the Galois and non-Galois cases)?

@ We have the class of (near) one-dimensional extensions in

characteristic p which have a Galois scaffold. How do they fit into
Bondarko's picture?

@ How do scaffolds behave under tame base change?
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